54.3x^2-(11.5*54.3)x+(33.0625*54.3)-(4x^2)=0

Simple and best practice solution for 54.3x^2-(11.5*54.3)x+(33.0625*54.3)-(4x^2)=0 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 54.3x^2-(11.5*54.3)x+(33.0625*54.3)-(4x^2)=0 equation:



54.3x^2-(11.5*54.3)x+(33.0625*54.3)-(4x^2)=0
determiningTheFunctionDomain 54.3x^2-4x^2-(11.5*54.3)x+(33.0625*54.3)=0
We add all the numbers together, and all the variables
54.3x^2-4x^2-(624.45)x+(1795.29375)=0
We add all the numbers together, and all the variables
50.3x^2-(624.45)x+1795.29375=0
We multiply parentheses
50.3x^2-624.45x+1795.29375=0
a = 50.3; b = -624.45; c = +1795.29375;
Δ = b2-4ac
Δ = -624.452-4·50.3·1795.29375
Δ = 28724.7
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-624.45)-\sqrt{28724.7}}{2*50.3}=\frac{624.45-\sqrt{28724.7}}{100.6} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-624.45)+\sqrt{28724.7}}{2*50.3}=\frac{624.45+\sqrt{28724.7}}{100.6} $

See similar equations:

| n8=11/5 | | 48=−8b | | –3x+8=14 | | 54.3x^2-(11.5*54.3)x+(33.0625*54.3)-((4x^2)*54.3)=0 | | 2x=3=7x | | (4-7y)(7+4y)=(4−7y)(7+4y)= | | 20/120=x/93 | | 20/120=93/c | | 6x-22=6x-46 | | 3x+10=5x-17 | | (5.75-x)(5.75-x)=0 | | -8(8+6v)=18-7v | | 25x-45=25x+25 | | 3x18=9 | | 9x-18=-9x-54 | | 15+0.90m=2(20+.25m) | | 20+5x=18+4x | | 2u+18=20 | | 3d+4d=39 | | 17+4x=15+3x | | 38+0.35m=2(20+1m) | | k-4.8=0.32-5.4k | | 18.50x+0.15x=18.00x+0.25x | | 2x+17=4x-79 | | 7-y=5-3 | | 7x+20=34+5x | | 8x-1=137 | | −4x−20=4x+12. | | -2k+4(3k+8)=17+5k | | j-(5-3j)=7 | | 10x+5=-15x+55 | | -3=c+4 |

Equations solver categories